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Motivation 

Shortest path problems occur in many applications 

including: 

• Transportation 

• Routing 

• Communications 

• Supply chain management 

• Models involving agents 



Graph Definitions 

A graph G = (V, E) consists of a set of vertices V and a 

set of edges E. 

 

In a directed graph, each edge is an ordered pair (i, j) 

representing an arc connecting nodes i and j. 

 

A path pij is a sequence pij = {i, (i, i1), i1, …, ik, (ik, j), j} 

of alternating nodes and arcs that connect two nodes i 

and j. 

 



Graph Definitions 

For the shortest path problem, we define a source node s 

with index 1, and choose t as the destination node. 

 

We assume that there exists at least one path psi in 

G = (V, E) for each node i  V – {s}. 
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Graph Definitions 

Each arc (i, j) is assigned a value representing the cost, 

time, distance, etc. required to traverse from i to j. 

 

Formally, the SPP seeks to find the path corresponding 

to the minimum cost of travel between the source and 

destination nodes. 
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Graph Definitions 

Traditionally, the arc weights are defined as real 

numbers, giving rise to an optimally shortest path. 

 

However, many practical applications may find fuzzy 

numbers to be more appropriate for defining arc weights. 

 

This requires the choice of a ranking function to 

determine the smaller of two fuzzy numbers. 



Fuzzy Numbers 

Let us define a triangular fuzzy number 𝑎 = 𝑚, 𝛼, 𝛽  

with the membership function 𝜇𝑎 𝑥 , defined as 

 

𝜇𝑎 𝑥  

𝑥 
𝑚 𝑚 − 𝛼  𝑚 + 𝛽  

1 



Fuzzy Addition 

The sum of two fuzzy numbers 𝑎 = 𝑚1, 𝛼1, 𝛽1  and 

𝑏 = 𝑚2, 𝛼2, 𝛽2  is given as 

 

𝑎 ⊕ 𝑏 = 𝑚1, 𝛼1, 𝛽1 ⊕ 𝑚2, 𝛼2, 𝛽2  
= 𝑚1 + 𝑚2, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2  

 
𝜇 𝑥  

𝑥 
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Fuzzy Ranking 

Consider a simple network 

with edge lengths defined by 

fuzzy numbers. 

 

The total length of each path 

is a new fuzzy number. 

 

How can we decide which 

path is to be preferred? 

From “A shortest path problem on a network with fuzzy arc lengths” by S. Okada and T. Soper 



Fuzzy Ranking 

We say that 𝑎  is preferred to 𝑏  𝑎 ≺ 𝑏  iff 𝑎 < 𝑏 . 

 

The following six ranking functions are considered: 

• Yager’s index 

• Liou and Wang index 

• García and Lamata index 

• Okada and Soper relation 

• Nayeem and Pal acceptability index 

• Dubois and Prade’s possibility index 



Yager’s Index 

Compare the centroids of the two fuzzy numbers. 

 

𝑓 𝑎 =
 𝑥𝑎 𝑥 d𝑥

 𝑎 𝑥 d𝑥
 

 

𝑎 < 𝑏  iff 𝑓 𝑎 < 𝑓 𝑏  



Liou and Wang Index 

Weight the left and right centroids. 

 
𝐿𝑊𝜆 𝑎 = 𝜆𝑆𝐷 𝑎 + 1 − 𝜆 𝑆𝐼 𝑎  

where 

𝑆𝐷 𝑎 = 𝑚 +  𝑓𝑎 
𝑅 𝑥  d𝑥

𝑚+𝛽

𝑚

=  𝑓𝑎 
𝑅−1

𝑦  d𝑦
1
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𝑆𝐼 𝑎 = 𝑚 − 𝛼 +  𝑓𝑎 
𝐿 𝑥  d𝑥

𝑚

𝑚−𝛼

=  𝑓𝑎 
𝐿−1

𝑦  d𝑦
1

0

 

𝜆 ∈ 0,1  represents the decision-maker’s optimism/pessimism 

 

𝑎 < 𝑏  iff 𝐿𝑊𝜆 𝑎 < 𝐿𝑊𝜆 𝑏  



García and Lamata Index 

Add a modality index 𝛿 ∈ 0,1  to the previous index, indicating a 

weighted preference for the modal value of the fuzzy number. 

 

𝐼 𝑎 = 1 − 𝛿 𝜆𝑆𝐷 𝑎 + 1 − 𝜆 𝑆𝐼 𝑎 + 𝛿𝑚 

 

𝑎 < 𝑏  iff 𝐼 𝑎 < 𝐼 𝑏  



Okada and Soper Relation 

Let 𝑎 = 𝑚1, 𝛼1, 𝛽1  and 𝑏 = 𝑚2, 𝛼2, 𝛽2  be two triangular fuzzy 

numbers and 𝜀 ∈ 0,1  be an optimism factor. 

 

For 𝛼-cuts in 𝜀, 1 , 𝑎  dominates 𝑏  with a degree 𝜀 𝑎 ≺𝜀 𝑏  iff 

 

𝑚1 ≤ 𝑚2, 
𝑚1 − 𝛼1 𝜀 ≤ 𝑚2 − 𝛼2 𝜀 , 
𝑚1 + 𝛽1 𝜀 ≤ 𝑚2 + 𝛽2 𝜀 , 

𝑎 ≠ 𝑏  

 

𝑎 < 𝑏  iff 𝑎 ≺𝜀 𝑏  



Nayeem and Pal Acceptability Index 

For two triangular fuzzy numbers 𝑎 = 𝑚1, 𝛼1, 𝛽1  and 

𝑏 = 𝑚2, 𝛼2, 𝛽2 , 

 

𝐴 𝑎 ≺ 𝑏 =
𝑚2 − 𝑚1

𝛽1 + 𝛼2
 

 

𝑎 < 𝑏  iff 𝐴 𝑎 ≺ 𝑏 > 𝐴 𝑏 ≺ 𝑎  



Dubois and Prade’s Possibility Index 

For two fuzzy numbers 𝑎  and 𝑏 , 

 

Poss 𝑎 < 𝑏 = sup
𝑥𝑖≤𝑥𝑗

min 𝑎 𝑥𝑖 , 𝑏 𝑥𝑗  

 

𝑎 < 𝑏  iff Poss 𝑎 < 𝑏 > Poss 𝑏 < 𝑎  



Fuzzy Ranking 

These six ranking indexes can be classified into two 
groups: 

 

• Indexes that map fuzzy numbers into crisp numbers 

– Yager’s index 

– Liou and Wang index 

– García and Lamata index 

• Indexes that compare the ordering of two fuzzy numbers 

– Okada and Soper relation 

– Nayeem and Pal acceptability index 

– Dubois and Prade’s possibility index 

 

 



Fuzzy Shortest Path Problem 

Given the set of directed edges E, where each arc (i, j)  E is 

assigned a fuzzy number 𝑐 𝑖𝑗, FSPP is formally defined as a linear 

programming problem: 

 

 

 

 

 

 

where r is the number of nodes, t is the destination node and ∑ refers 

to the addition of fuzzy numbers. 



Fuzzy Shortest Path Problem 

Because of the various ranking methods for fuzzy numbers, we 

cannot solve the linear program directly. 

 

This has lead to the development of several specialized algorithms. 

• Dubois and Prade’s extension of the Floyd-Warshall and Bellman-Ford algorithms 

• Klein’s dynamic programming method 

• Lin and Chern searched for arcs that increase total cost when removed from the path 

• Okada et al. extended Dijkstra’s algorithm to find a Pareto optimal path 

• Blue et al. used a modified k-shortest path algorithm proposed by Eppstein 

• Okada considered the possibility of an arc being on the shortest path 

• Nayeem and Pal used an algorithm based on their acceptability index 



Fuzzy Shortest Path Problem 

These methods often present peculiarities and/or problems: 

 

• They find costs without an existing path. 

 

• They do not provide decision-makers with any guidelines for 

choosing the best path. 

 

• They can only be applied to graphs with fuzzy non-negative 

parameters. 



Bellman-Ford Algorithm (Crisp) 

The Bellman-Ford algorithm finds the shortest paths in a graph G, given a source 

vertex s and a set of weights w. For each vertex v, d[v] stores an upper bound on the 

distance from s to v and π[v] stores the best path predecessor of v. 

From “Introduction to Algorithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein 



Bellman-Ford Algorithm (Crisp) 

From “Introduction to Algorithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein 



Bellman-Ford Algorithm (Crisp) 

From “Introduction to Algorithms” by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein 



Fuzzy Shortest Path Algorithm 

Notation: 

 

𝑟 number of nodes; 

𝑖𝑡 iteration counter; 

𝐸 set of edges; 

𝑀 = ∑ 𝑚 + 𝛽 𝑖𝐸
𝑖=1  a large number substituting ∞; 

𝑐  𝑗𝑖  cost of arc 𝑗, 𝑖 ; 

𝑝 1,𝑡  path between nodes 1 and t; 

𝛤𝑖
−1 set of predecessor nodes of 𝑖; 

𝑑 𝑘
𝑖𝑡 𝑝 1,𝑡  distance along path 𝑝 1,𝑡  of the 𝑘th label in the iteration 𝑖𝑡; 

𝑑𝑘
𝑖𝑡 𝑝 1,𝑡  the ranking index applied to 𝑑 𝑘

𝑖𝑡 𝑝 1,𝑡 ; 



Fuzzy Shortest Path Algorithm 

Step 0: [Initialization] 

(1) 𝑑 1
0 𝑝 1,1 = 0,0,0  

(2) 𝑑 1
0 𝑝 1,𝑗 = 𝑀 + 2, 1, 1 ,  𝑗 = 2,3, … , 𝑟 

(3) 𝑖𝑡 ← 1 

 

Step 1: [Determination of distance paths, dominance check, and negative circuit] 

(1) 𝑑 1
𝑖𝑡 𝑝 1,1 = 0,0,0  

(2) [Determination of fuzzy path distances: The distance between nodes 1 and 𝑖 is 

the fuzzy addition of the distance of the path with the predecessor node in the 

previous iteration 𝑑 𝑙
𝑖𝑡−1 𝑝 1,𝑗  and the cost of arc 𝑗, 𝑖 ] 

• ∀𝑗 ∈ 𝛤𝑖
−1, 𝑖 = 2, 3, … , 𝑟, do: 

   𝑑 𝑘
𝑖𝑡 𝑝 1,𝑖 = 𝑑 𝑙

𝑖𝑡−1 𝑝 1,𝑗 ⊕ 𝑐 𝑗𝑖 

 



Fuzzy Shortest Path Algorithm 

(3) [Dominance check: For each node 𝑖 ∈ 𝑁, the dominance is checked for all the 

labels of the node 𝑖, being compared one to one] 

• If 𝑑𝑘
𝑖𝑡 𝑝 1,𝑖 > 𝑑𝑙

𝑖𝑡 𝑝 1,𝑖 ⟹ delete the label 𝑘 

• If 𝑑𝑙
𝑖𝑡 𝑝 1,𝑖 < 𝑑𝑘

𝑖𝑡 𝑝 1,𝑖 ⟹ delete the label 𝑙 

 

(4) [Verification of a negative circuit: The verification of the existence of a negative 

circuit is performed by means of the applied index on the distance of the path 

𝑝 1,𝑗 . If the results are negative, the algorithm will be in an infinite loop] 

• If there is at least one node 𝑖 such that 𝑑𝑘
𝑖𝑡 𝑝 1,𝑖 < 0 then 

– Go to step 4 [negative circuit] 

– Otherwise go to step 2 (next slide) 

 



Fuzzy Shortest Path Algorithm 

Step 2: [Stop criterion] For all nodes and all labels do: 

(1) If 𝑑 𝑘
𝑖𝑡 𝑝 1,𝑖 = 𝑑 𝑘

𝑖𝑡−1 𝑝 1,𝑖  or 𝑖𝑡 = 𝑟  do: 

• If 𝑖𝑡 = 𝑟 and 𝑑 𝑘
𝑖𝑡 𝑝 1,𝑖 ≠ 𝑑 𝑘

𝑖𝑡−1 𝑝 1,𝑖  then 

– Go to step 4 [negative circuit] 

– Otherwise go to step 3 

(2) Otherwise 𝑖𝑡 = 𝑖𝑡 + 1, go to step 1. 

 

Step 3: [Shortest paths composition: Find the shortest paths from 1 to 

𝑖 𝑖 = 2, 3, … , 𝑟 . It is sufficient to store in block 1.2 the predecessor nodes of 𝑖 
that are used to rebuild the shortest paths] 

 

Step 4: [Termination: Finish the execution of the algorithm] 



Complexity Analysis 

The algorithm takes at most 𝑟 − 1 iterations to converge. 

 

In step 1 of each iteration a maximum of 𝑟𝑉max additions are 
computed where 𝑉max is the maximum number of labels that can be 
assigned to a node. 

 

In step 2 of each iteration, a maximum of 𝑟𝑉max
2  dominance 

comparisons are required. 

 

This gives an overall complexity of 

 

𝑂 𝑟 − 1 𝑟𝑉max
2 = 𝑂 𝑟2𝑉max

2 + 𝑟𝑉max
2 = 𝑂 𝑟2𝑉max

2  



Example 

1 3 

2 

(3,1,2) 

(6,1,6) 

(4,2,2) 

𝑀 =  𝑚 + 𝛽 𝑖

𝐸

𝑖=1

= 5 + 6 + 12 = 23 

2   3       5 
2       4        6 

5   6              12 

Initialization 

𝑖𝑡 = 0: 

𝑑 1
0 𝑝 1,1 = 0,0,0   

𝑑 1
0 𝑝 1,2 = 25,1,1   

𝑑 1
0 𝑝 1,3 = 25,1,1   

 

 



Example 

1 3 

2 

(3,1,2) 

(6,1,6) 

(4,2,2) 

2   3       5 
2       4        6 

5   6              12 

Determination of fuzzy path distances 

𝑖𝑡 = 1: 

𝑑 1
1 𝑝 1,1 = 0,0,0   

𝑑 1
1 𝑝 1,2 = 25,1,1  𝑑 2

1 𝑝 1,2 = 3,1,2 1 

𝑑 1
1 𝑝 1,3 = 25,1,1  𝑑 2

1 𝑝 1,3 = 6,1,6 1  𝑑 3
1 𝑝 1,3 = 29,3,3 2 

 

 



Example 

1 3 

2 

(3,1,2) 

(6,1,6) 

(4,2,2) 

2   3       5 
2       4        6 

5   6              12 

Dominance check 

𝑖𝑡 = 1: 

𝑑 1
1 𝑝 1,1 = 0,0,0   

𝑑 1
1 𝑝 1,2 = 3,1,2 1  

𝑑 1
1 𝑝 1,3 = 6,1,6 1  

 

 



Example 

1 3 

2 

(3,1,2) 

(6,1,6) 

(4,2,2) 

2   3       5 
2       4        6 

5   6              12 

Determination of fuzzy path distances 

𝑖𝑡 = 2: 

𝑑 1
2 𝑝 1,1 = 0,0,0   

𝑑 1
2 𝑝 1,2 = 3,1,2 1  

𝑑 1
2 𝑝 1,3 = 6,1,6 1  𝑑 2

2 𝑝 1,3 = 7,3,4 2 

 

 



Example 

1 3 

2 

(3,1,2) 

(6,1,6) 

(4,2,2) 

2   3       5 
2       4        6 

5   6              12 

Dominance check 

𝑖𝑡 = 2: 

𝑑 1
2 𝑝 1,1 = 0,0,0   

𝑑 1
2 𝑝 1,2 = 3,1,2 1  

𝑑 1
2 𝑝 1,3 = 6,1,6 1  𝑑 2

2 𝑝 1,3 = 7,3,4 2 

 

 

Depends on the choice 

of ranking function 



Example 

1 3 

2 

(3,1,2) 

(6,1,6) 

(4,2,2) 

2   3       5 
2       4        6 

5   6              12 

No change in 3rd iteration; algorithm terminates 

𝑖𝑡 = 3: 

𝑑 1
2 𝑝 1,1 = 0,0,0   

𝑑 1
2 𝑝 1,2 = 3,1,2 1  

𝑑 1
2 𝑝 1,3 = 6,1,6 1  𝑑 2

2 𝑝 1,3 = 7,3,4 2 

 

 

Depends on the choice 

of ranking function 
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Conclusions 

The fuzzy shortest path problem has a wide range of 
applications. 

 

Depending on the fuzzy ranking, the presented algorithm can 
return a single path or a set of non-dominated paths. 

 

The algorithm can work with fuzzy numbers of any type, so 
long as an appropriate ordering is defined. 

 

By extending the Bellman-Ford algorithm, this method can 
handle graphs with negative arc weights and can detect negative 
cycles. 


